A temporary file weakness occurs when a temporary file that is created and used by a high-privilege process is accidentally shared with a low-privilege process, on account of it being temporary and generated after all security controls have been applied. This allows the low-privilege process to read data from the high-privilege process (information leakage), or worse, influence the high-privilege process by modifying the shared temporary file.
Temporary file race condition.
glibc-2.12-2-gc4ccff1/nptl/tst-cancel4.c
The highlighted line of code below is the trigger point of this particular Centos 6 tmpfile weakness.
}
static void *
tf_recvmsg (void *arg)
{
struct sockaddr_un sun;
tempfd = socket (AF_UNIX, SOCK_DGRAM, 0);
if (tempfd == -1)
{
printf ("%s: first socket call failed\n", __FUNCTION__);
exit (1);
}
int tries = 0;
do
{
if (++tries > 10)
{
printf ("%s: too many unsuccessful bind calls\n", __FUNCTION__);
}
strcpy (sun.sun_path, "/tmp/tst-cancel4-socket-5-XXXXXX");
if (mktemp (sun.sun_path) == NULL)
{
printf ("%s: cannot generate temp file name\n", __FUNCTION__);
exit (1);
}
sun.sun_family = AF_UNIX;
}
while (bind (tempfd, (struct sockaddr *) &sun,
offsetof (struct sockaddr_un, sun_path)
+ strlen (sun.sun_path) + 1) != 0);
tempfname = strdup (sun.sun_path);
tempfd2 = socket (AF_UNIX, SOCK_DGRAM, 0);
if (tempfd2 == -1)
{
printf ("%s: second socket call failed\n", __FUNCTION__);
exit (1);
}
int r = pthread_barrier_wait (&b2);
if (r != 0 && r != PTHREAD_BARRIER_SERIAL_THREAD)
{
printf ("%s: barrier_wait failed\n", __FUNCTION__);
exit (1);